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1 Introduction

Author(s): Lauren

The purpose of this Lab is to successfully implement a wall follower algorithm
and safety control algorithm onto the racecar such that the car can a) success-
fully use LiDAR data to detect walls, follow a wall while maintaining a specified
distance, and handle corners and curves and b) avoid collisions with obstacles,
even when the car is moving at high speeds.

The racecar is fit with a LiDAR scanner that can measure the distances between
the racecar and nearby objects. Generally speaking, the wall follower algo-
rithm receives, slices, and filters this data based on the location of the nearest
obstacle, the wall the racecar is following, and the desired distance that we want
to maintain from the wall. This data is then used to find the closest distance
between the car and the nearest obstacle and then inputted into a PD controller
to determine the output steering angle. Along with the speed, the steering angle
is then published as a drive command to the racecar so that the racecar can
avoid obstacles while following the wall.

When the racecar gets too close to a nearby obstacle (i.e. significantly less than
the desired distance away from it) our safety control algorithm comes into
play. This algorithm works by taking in the distance data from the LiDAR
scanner, determining if the distance between the car and the nearest obstacle
is significantly small, and then stopping the car in its tracks if it is about to
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collide with the obstacle.

Using these algorithms, our team set out to accomplish the following steps.

1. Drive the racecar in teleop mode and successfully visualize the LiDAR
data.

2. Autonomously drive the racecar with our wall following code.

3. Prevent crashes using our safety controller while maintaining flexibility.

Given that the racecar is an expensive robot, the implementation of the above
algorithms will ensure that the car won’t harm itself beyond repair and thus
will remain usable for future classes.

2 Technical Approach

2.1 Initial Set-up

Author(s): Lauren

Prior to this lab, our team’s members each individually created a wall fol-
lower algorithm for the racecar simulation. Each of our algorithms split the
LiDAR distances data into a variation of subsets, used either linear regression
or another filtering method for finding the distances between the car and the
nearest objects, and implemented some degree of control for the car’s steering.
Once the team was formed, one of our earliest tasks was to figure out who’s
wall follower code should be pushed to our robot. To determine this, each team
member briefly described how their wall follower was structured and what score
they received for the wall follower lab gradescope submission. The wall followers
with high scores (9.0+) were first filtered, and then each member’s code was
reviewed for reliability and logic. Ultimately, the team chose to write a new
wall follower that combined pieces of logic from multiple team members’ wall
follower algorithms. Our safety controller, however, was written from scratch.

2.2 Wall Follower

Author(s): Rachel (Lidar Data Slicing), An Bo (Distance Calcula-
tion), Lauren (PD Feedback Control), Claire (Corners Navigation)

To achieve a successful and efficient wall follower, our racecar needs to analyze
and use the LiDAR data. It is crucial to translate the raw data from the LiDAR
into useful pieces of information that we can incorporate into our program and
use to tune our wall follower program. This results in a process of four main
components.

1. LiDAR Data Slicing
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2. Distance Calculation

3. PD Feedback Control

4. Corner Navigation

2.2.1 LiDAR Data Slicing

The first step towards achieving an efficient wall follower program is to analyze
the data we got from the LiDAR. LiDAR data comes in the form of an array
where each element in the array is the distance the racecar is from an object in
the environment at a certain angle. Our LiDAR can measure distances at an
angle between -135◦ and 135◦ with an increment of about 0.27◦. This results in
our LiDAR data having 1000 elements per callback. We divided this data into
three sections: left, right, and front. This division is shown in Fig. 1. The left
and right sections are used when the racecar is either following the left or right
wall respectively. The front section is used for both corner detection (2.2.4) and
the safety controller (2.3).

Figure 1: Sliced ranges of the racecar’s LiDAR data where the entire region is
-135◦ to 135◦. Green represented the left partition, yellow represents the front
partition, and red represents the right partition.

2.2.2 Distance Calculation

Once we sliced the LiDAR scan ranges and their corresponding angles into de-
sired partitions, we filtered the ranges and angle partitions. First, we found
the closest distance using the closest range data point to the racecar in range
partition and then filtered the rest of the range and angle data points checking
whether they were within min distance±desired distance ·filter factor.
This way we would reduce the amount of outliers that the racecar would use to
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calculate the linear regression line to represent the wall that it is supposed to fol-
low. The filter factor is determined through a tuning process where we analyzed
how the resulting line is drawn in different environments. Then we calculated
corresponding x and y coordinates using the filtered ranges and angles, where
each x coordinates is the corresponding range · cos(angle) and likewise each
y coordinates is the corresponding range · sin(angle). We used the numpy
polyfit function to calculate a resulting slope and y-intercept. Finally, for our
distance calculation we used Eqn. 1 to find the distance of a line in y = mx+ b
from the origin:

distance =
|y intercept|√

slope2 + 1
(1)

2.2.3 PD Feedback Control

Our team implemented a variation of a proportional-derivative (PID) feedback
controller into our robot so that it could handle both straight, uniform and
curvy, non-uniform wall contours and corners. Simply speaking, a PID con-
troller is a feedback loop that calculates the error between a desired setpoint
and a measured processed variable and uses proportional (Kp), integral (Ki)
and derivative (Kd) terms to apply a correction. In our case, the setpoint is our
desired distance from the wall, and our measure processed variable is the car’s
actual distance from the wall. For our wall follower, we decided to implement a
PD controller that solely used the P and D constants, Kp and Kd respectively,
for simplicity. Using a purely proportional controller was not sufficient to elim-
inate oscillations and minimize error. We also found that our robot performed
to our desired standards without the addition of an integral term.

Our PD controller parallels Eqn. 2 to give us our steering angle. de(t)
dt , which is

determined via Eqn. 3, is dependent on

1. e(t), our error and the difference between the car’s desired distance from
the wall and the car’s actual distance from the wall

2. e(t)prev, the previously calculated error

3. ∆t, the time since the car received the last laser scan

u(t) = Kp · e(t) +Kd ·
de(t)

dt
(2)

de(t)

dt
=

e(t)− e(t)prev
∆t

(3)

We determined the constant ∆t to be 0.05 by taking the multiplicative inverse
of the rospy rate. To find the constants Kp and Kd, we used a tuning process.
First, we doubled Kp until the racecar started oscillating side to side, and then
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we increased Kd until the car no longer oscillated. This process featured a lot
of trial and error, but we eventually found that a Kp of 2.25 and a Kd of 0.5
allowed our robot to steer and turn effectively. The observations and tuning
process can be seen in Fig. 6.

2.2.4 Corner Navigation

In addition to following a straight wall, we wanted our robot to be able to turn
with the wall as it encounters both open and closed corners. We define an open
corner as a corner where the wall curves away from the robot, and a closed
corner where the wall curves in front of the robot, as seen in Fig. 2. We were
able to achieve reliable turning on both open and closed corners by tuning the
ranges of our LiDAR slices, and redefining the wall to follow when encountering
closed corners.

Open Corners
To navigate open corners, we rely on our wall-following algorithm to properly
turn the robot so that it continues to follow the wall. We had to experiment
with the angle ranges that we use to slice the LiDAR data as well as our PD
gains to achieve robust open corner turning that did not negatively impact our
wall-following. Specifically, we found that including more data from the side
and behind our robot helped with detecting when the wall bends away from the
robot.

Closed Corners
To detect closed corners, we isolated a specific range of points from the front,
spanning -0.1 to +0.1 radians. These points are used to calculate a specific
front error by filtering and drawing a line across points in the front, and find-
ing the distance from the robot to that front line. The desired distance for
this front error is our desired wall-following distance times a front factor pa-
rameter. We experimented with different values for front factor, but found that
front factor = 4.0 achieved appropriate turning for the corners. With lower
front factor values, we detected closed corners too late and were not able to
start turning in time.
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Figure 2: Separate front and side ranges of points, where the front range spans
-0.1 to 0.1 radians. The front range is used to detect closed corners.

Once we have detected a closed corner, we redefine the wall that the robot is
following. If we find that front error is positive - that is, the robot is closer than
(front factor) · (desired distance) to points in the range of -0.1 to +0.1 radians
- we redefine the wall that the robot is following. We concatenate the points in
the front with the points used to form the wall on the side, fit a line to those
points, and define a new wall based on the combined front and side, as seen in
Figure 3. This process creates a wall that cuts across the corner, and the robot
is now following this artificial wall. From the robot point of view, the wall that
it is following now suddenly curves in front instead of having a sharp, discrete
corner, and we were able to successfully turn in closed corners.

Figure 3: Artificial wall created by fitting a line to the front and side points
combined. The car now measures its distance from the wall to be d, and this
informs the error and steering angle that the car will take.
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To fine-tune the turning on closed corners, we applied a multiplier to the steering
angle produced by our PD controller. After we redefined the wall to cut across
the corner, we calculated the error to this wall using the same method that we
use for normal wall-following, and found the steering angle by passing in this
error to our PD controller. However, the steering angle was not drastic enough to
fully turn on tight, closed corners, so we introduced a steering factor parameter
that multiplies the steering angle by a constant. We found that steering factor
= 2.0 was strong enough to create successful turning on 90-degree closed corners
and avoid colliding into the walls.

2.3 Safety Controller

Author(s): Rachel

The racecar contains numerous expensive sensors and components that can get
damaged, especially when driving using the wall follower. To avoid collisions
while the racecar drives autonomously, we implemented a safety controller that
runs in parallel with the wall follower package that prevents the racecar from
crashing into obstacles. Our ideal safety controller will enable the racecar to
successfully achieve all the requirements of an efficient wall follower (drive close
to walls, turn around corners, achieve high speeds, etc) while also be able to
prevent crashes. To achieve this, we made a safety package that subscribes to
sensors and intercept published driving commands, and publishes to the safety
navigation topic if the racecar is in danger of collisions.

2.3.1 Hierarchy of Driving Controls

When the racecar drives autonomously using the wall follower package, publish-
ing to the safety navigation topic will allow us to override the drive commands
and prevent collisions due to the intrinsic hierarchy of driving controls presented
by the muxes. We were able to achieve levels of control through publishing to
different priority topics. For our racecar, there are three main essential naviga-
tion command topics each with different priority levels as described in Fig. 4.
Since the safety topic has higher priority than the navigation topic, any driving
commands published to safety will override any driving commands from navi-
gation.
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Figure 4: Graph of the procedure of drive commands and how code is transferred
to the racecar. The priority of the three types of drive commands are ranked
from teleop to safety to navigation where navigation is the drive command from
the wall follower code.

2.3.2 Safety Controller Procedure

Our safety controller uses similar technical features as our wall follower. We
subscribed to the LiDAR sensor data to get the distances the racecar is from
objects in the environment. Since collisions occur when the racecar drives into
an object, we sliced the LiDAR ranges data such that we only use the distances
from the front of the racecar. This translates to -3 degrees to 3 degrees of the
LiDAR data. After slicing the data, we underwent a series of steps to make the
data usable for our safety controller.

1. Filter the data such that only distances within a range is accepted.

2. Did linear regression on the remaining data.

3. Calculated the distance the robot is to the line representing the wall.

4. If the distance is within a threshold, override the drive commands from
the wall follower.

The range for the filter is determined by finding the minimum distance in the
sliced data and adding an upper bound of two meters plus the minimum. This
eliminates outliers that are very far away from the robot which prevents the
calculated distance from being further than the actual distance. Using minimum

8



distance with an upper bound allows us to get a distance that is close to the
racecar while not causing the racecar to be too cautious. This results in a safety
controller that can detect sudden obstacles in front of the racecar in the form of
objects or humans regardless of the speed the racecar is driving. All these steps
put together enabled us to create a safety controller that successfully prevent
collisions while allowing the racecar to maintain the ability to effectively follow
the wall.

3 Experimental Evaluation

Author(s): Brian (Qualitative Wall follower and Quantitative) and
Rachel (Qualitative Safety Controller)

3.1 Qualitative Evaluation

3.1.1 Wall follower

After implementing our wall follower and safety controller, we performed qual-
itative testing of our car’s PD controller in order to quickly evaluate many
different values for Kp and Kd and find the best set of gains for our car. We
decided to use our gains from simulation as a starting point (Kp = 5,Kd = 0).
This is what we defined as our untuned controller. We also wanted the car to
follow the same wall for all the tests in order to reduce external factors in the
car’s performance. We selected a corner in Stata basement that was challenging
enough to be insightful but also representative of a typical wall scenario our
car might encounter as shown in Fig. 5. To optimize our gains, we tuned in a
process described in section 2.2.3 such that it satisfies the following criteria.

1. The car should successfully complete a turn.

2. The car should initiate the turn at a reasonable distance from the corner.

3. The car should minimize overshoot.

4. The car should minimize oscillations after completing the turn.

A selection of some of our test points and observations are included in Fig. 6.
Note that for these tests, the car followed the right wall at a distance of 1m.
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Figure 5: Corner used for testing PD controller gains (yellow line indicates
desired path.)

Kp Kd Observations
5 0 Lots of oscillations

even when just
following wall leading

up to turn.
1 0 Went really far away

from wall but did
complete the corner

eventually.
2 0 Completed turn in

acceptable manner
2 0.35 Very steady when

following wall leading
up to turn, but

completes a wide turn
that eventually
straightens out.

2 0.5 Tighter turn and
oscillations are more

dampened.

Figure 6: Select Kp and Kd values with observations.

From our testing, we observed that increasing Kp made the car respond quicker
to changes in the wall but increasing it too much lead to undesired oscillatory
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behavior. In general, increasing Kd seemed to dampen out the oscillations and
smooth out the car’s steering but too much Kd made the car sluggish. Thus,
our approach to adjusting the gains was to first increase Kp until we noticed
oscillations and then increase Kd to smooth out the oscillations.

Finally, we also evaluated our car on a more complex wall shape. To do this,
we selected two walls in both Stata basement and Baker that combined various
types of corners and wall geometries, including gaps in the wall, doorways,
pillars, and more. The car successfully completed both courses so we deemed
our controller robust enough to handle real world wall following scenarios.

3.1.2 Safety Controller

To evaluate the efficacy of the safety controller we used five tests.

1. Object detection of person in front of the racecar.

2. Object detection at low-speed.

3. Object detection at medium-speed.

4. Object detection at high-speed.

5. The wall follower still runs successfully while the safety controller is active.

To determine the success rate of each test, we visually analyzed whether the
racecar was able to stop in time while running the wall following code for multi-
ple iterations. All the obstacles were introduced suddenly and at a close distance
in order to avoid the racecar misidentifying the obstacle as a wall and try to
drive around it. For object detection of a person in front of the racecar, we had
a person jump from and away the front of the racecar. We noticed that the
racecar successfully stops when a person suddenly appears in its path. For ob-
ject detection that is not a person, we used a small rectangular box and a large
rectangular lid as the obstacles to test our safety controller on. We varied the
speed of the racecar and visually confirmed that the racecar was able to detect
the objects and stop moving when the objects were suddenly placed in its path.
For all the above tests, the racecar was also able to resume its path once the
obstacle is removed. Finally, we also tested that the wall follower code still runs
successfully with the safety controller to ensure that the safety controller does
not cause the racecar to drive too cautiously or negatively impact the error in
the wall follower.

With the safety controller successfully passing all the tests above, we confirmed
that the racecar is able to avoid collisions while maintaining the ability to follow
the wall and handle corners.
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3.2 Quantitative Evaluation

In addition to collecting qualitative data, we also recorded error measurements
from our racecar using both our original, untuned controlled (Kp = 5,Kd =
0,) and our new, tuned controller (Kp = 2.25,Kd = 0.5,) on three different
scenarios: a closed corner, an open corner, and a simple, curved wall. These
scenarios are depicted in Fig. 7. Recall from Eqn. 3, we defined the error at
any given time step as the difference between the desired distance from the wall
and the actual distance from the wall. We then plotted these errors in order to
compare our tuned and untuned controllers in Fig. 8, 9, and 10. Note that for
these tests, the car followed the right wall at a distance of 0.5m.

Figure 7: Test Scenarios (yellow line indicates desired path, orange cone denotes
car’s starting position).

Figure 8: Error for closed corner scenario
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Figure 9: Error for open corner scenario

Figure 10: Error for curved wall scenario

In Fig. 8, we see that there is a big improvement for closed corners using the
tuned controller. For example, around 3s which is when the turn occurs, the
car had a maximum error of -0.7m for the tuned controller compared to -0.9m
for the untuned controller. However, for the open corners and simple curved
wall scenarios as shown in Fig. 9 and 10 respectively, while the car navigated
the scenarios successfully, we did not see as big of a difference in performance
between the untuned and tuned controllers. This was unexpected given that
our qualitative observations showed that the tuned controller was better, but
there are a couple reasons we hypothesize to explain our observations. The
main reason is how we defined our error relative to the visualized wall. It is
derived from a noisy measurement, so any error in the visualized wall means
that our distance from the wall error will also be incorrect. Ideally, our error
would be based on a ground truth wall and car position so that we would be
able to calculate the true error. This idea is explored further in the conclusion
section of this report.

It is also interesting to note that our error for the open corner is pretty high for
both tuned and untuned controllers, reaching almost 7m at around 6.5s. Dur-
ing the test, we did observe our car overshoot the corner, but it never exceeded
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more than 0.5m from the desired following distance. While we were unable to
diagnose a reason for this large measured error, it didn’t affect our controller
and in some ways was actually beneficial because it encouraged the controller
to make a more extreme correction and thus turn the car faster. We plan to
continue looking into this issue in future work.

We also calculated a sum of squares error error (Eqn. 4) for each of the tests
which is summarized in Fig. 11. While other error metrics also work, the
squared term on the error penalizes large deviations from the desired wall fol-
lowing distance which is desirable for our wall follower. Again, the error for our
tuned controller was significantly improved in the closed corner case but higher
than our untuned controller in the open corner and simple curved wall cases.
It is important to note that these numbers are only relevant in the context of
the specific tests we ran and while they do suggest that we can make further
optimizations to our Kp and Kd gains, we were not overly concerned as other
aspects of the car’s performance such as robustness and smoothness that were
greatly improved using the tuned controller were not reflected in these error
statistics.

end∑
t=start

error(t)2 (4)

tuned untuned
Closed
corner

4.8 12.2

Open corner 66.5 58.8
Simple
curved wall

3.4 2.6

Figure 11: Sum of square error for tuned and untuned controller in test scenarios

Overall, our quantitative evaluation largely reinforced our conclusions from our
qualitative tests. It also raised several areas for future investigation including
figuring out a more accurate method for measuring error, rerunning the open
corner tests to understand why the error was so large, continuing to tune our PD
controller, and calculating different summary statistics to help quantify other
aspects of our wall follower such as smoothness of the driving.

4 Conclusion

Author(s): Lauren (Summary, Next Steps), Brian (Limitations)
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Overall, our car managed to successfully follow the wall at a desired distance
including turning around corners and wall contours, and was able to stop and
correct its steering when approaching people, objects, and other obstacles. This
process was achieved through analyzing the LiDAR data by partitioning and
filtering, tuning the steering angle using PD controller, and creating a safety
controller. However, through our extensive experimentation and testing, we
also learned about the limitations of our approach and areas that we can im-
prove on in the future.

4.1 Limitations of distance to wall as a state variable

From the experimental evaluations, one of our conclusions was that using dis-
tance from the wall as the input to our controller has some drawbacks. While
this metric is relatively simple to compute, the main problem is that there are
infinitely many walls which share the same distance from the car as shown in
Fig. 12. This is not ideal because if the car is approaching a closed corner like
the one in Fig. 12, our wall detection logic would see the corner as the series
of red lines as visualized in the figure. However, the car’s distance, d, to each
of the lines would be the same. This is why for closed corners, we had to write
logic to force the car to start turning otherwise the PD controller would think
the car is always at an acceptable distance from the wall and never ‘see’ the
corner coming until it is too late.

A better approach might be to use the car’s x, y position as the state variables
for the PD controller. Instead of defining a desired distance from the wall, we
would have the car pursue a unique x, y position that is at the desired distance
from the wall. Picking this x, y position would require us to know where the car
and walls are located within a global frame, which we would could accomplish
using localization algorithms such as Simultaneous Localization and Mapping
(SLAM).
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Figure 12: All walls tangent to circle with radius d centered on the car have the
same perceived distance

4.2 Next Steps

In the next lab, our team will learn how to use our racecar’s camera so that our
car can park at certain markers. Specifically, we will do the following procedures.

1. Experiment/Prototype with several types of object detection algorithms.

2. Learn how to transform a pixel from an image to a real world plane using
homography.

3. Develop a parking controller to park your robot in front of an orange cone.

4. Extend your parking controller into a line following controller.

These steps, along with our wall follower code, will enable the racecar to more
efficiently drive autonomously. In particular a line follower working in conjuga-
tion with a wall follower will enable the racecar to handle different environments
and minimize error.

5 Lessons Learned

Lauren:
I found that my team generally worked very well together. I felt that we had
good communication in terms of scheduling meetings, explaining concepts and
algorithm implementations and in general treated each other with respect. From
a technical standpoint, I had difficulty implementing my wall following algorithm
in the previous lab, and working with team members who had more success with
the algorithm, I learned a great deal about partitioning the LiDAR data and
the motivations behind making certain divisions, in addition to determining the
constant values for the PD controller. I believe that the greatest difficulty we
had in completing this lab was time and robot availability. As multiple pod
groups needed our robot for extended periods of time (and often overlapping
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time periods) to complete algorithm testing and troubleshooting before the lab
deadline, coordination became difficult and frustrating and many of my team
members had to work 20-30+ hours over the course of the week to complete the
assignment by the due date.

An Bo:
The wall follower lab was quite an interesting and unique experience. For most
of my project-based classes at MIT, we usually focus solely on the technical
respective of the project objectives. This lab is my first time showcasing and
communicating a team’s technical results in the form of presentations and lab
reports. My role during the lab was to implement and revise our wall follower
code from the previous wall follower simulation lab into the real racecar. Inter-
esting enough, we found when we tried and used each team member’s initial wall
follower code into the racecar, the racecar would perform completely differently
than in the simulation. Following this discovery, I was tasked with rewriting our
wall follower such that our wall following logic were implemented and various
desired parameters could be easier modified without the need to dig into the
source code. An important technical lesson I learned is to always modularize
and document your software for future use and simulations may not always re-
flect reality. In regards to communication and collaboration, I feel lucky to be
in a team from wide background since a lot of the team had some intuition on
PID controllers and heuristics on optimizing Kp and K − D parameters such
that the racecar smoothly follows the wall. As well, as we tested the racecar, we
were about to collectively contribute and communicate on whether we need to
increase and decrease various parameters, modify our software logic, and plan
for future meetings.

Brian:
From a technical perspective, one of the lessons I learned was that it is challeng-
ing to replicate results in simulation on the real racecar. When we were first
starting this lab, we thought that we would be able to port over the wall follow-
ing code from whoever had the highest score from the simulation lab. However,
no matter whose code we tried, the car’s behavior would be completely different
than in the simulation often times steering and crashing in unexpected ways.
In order to make our actual car successfully wall follow, we had to combine
ideas from multiple teammates code. For example, the corner detection logic
was drawn from Claire’s code, the distance calculation formulas were from An
Bo’s code, the usage of a front wall was inspired by Rachel and Lauren’s labs,
and the PD controller implementation was from my code. This combination of
our ideas turned out to be one of the biggest benefits of working on this lab
together. Working with other people also helped make the debugging process
faster whenever we encountered issues. For example, when we just beginning
to work on this lab, there were many instances when I would forget to run a
command, like source devel/setup.bash, and get an error. With the help of my
teammates collective wisdom, I was always able to quickly figure out where I
made my mistake(s). The lab also helped me realize the importance of having
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a well organized team workspace. Our team set up a Notion workspace which
proved to be invaluable in helping us keep track of deadlines, take notes and
record data, and assign tasks to each member for the report and presentation.
I was grateful to have teammates who helped keep the workspace updated and
were also proactive in keep their own responsibilities organized. Overall, I had
a lot of fun with this lab and look forward to the next lab!

Claire:
I do not come from a robotics background, so I definitely learned a lot techni-
cally in terms of translating simulation to real life, and how important it was to
have ample time to test and tune the robot. It also forced us to think critically
about the robustness of our wall-following algorithm, as there were perhaps cer-
tain methods that might have been good enough for the simulation, but failed
in real life once we had much noisier and more inconsistent LiDAR data, as well
as a much wider variety in the kinds of walls that we had to follow. I learned
a lot about ways to figure out what was going wrong, and we heavily relied
on RViz to identify why our wall-follower wasn’t working early on in the lab.
Thanks to An Bo, we were able to parametrize our code using rosparam and
that was massively beneficial to being able to test different parameters quickly.
I feel lucky that our team communicated very effectively with each other - we
were always responsive in our team group chat, Brian set up an amazing Notion
page that was super helpful for keeping us organized and storing knowledge /
data as we worked on the lab, and we worked well with each other. I would
say the biggest challenge was collaborating and communicating with the other
teams in our pods, especially since we had to share cars. While we were on the
same page as each other, it was sometimes hard to get ahold of other teams
which resulted in us losing valuable time to work with the cars. Overall, the
model of sharing cars definitely limits progress versus us having our own cars,
but we are gradually learning how best to coordinate as a pod.

Rachel:
This wall follower lab was a very rewarding and challenging problem for me to
tackle. I do have some background experience working with and programming
robots through my UROP. However, my UROP project consisted of working
with a robotic arm and not a movable racecar. This lab allowed me to apply
all the programming and robotics skills I have from my prior experience, along
with the skills I learned from the prior labs, to an intensive problem. I really
appreciated the buildup of labs and how all the prior labs really prepared me
to tackle this wall follower lab. This resulted in this experience to be even
more enriching and satisfying to complete. This lab really helped solidify the
skills I learned working with ROS publishers and subscribers, as well as working
with LiDAR data. Moreover, my communication and collaboration skills were
definitely put to the test as my team and I tried to combine our simulation wall
follower code and try to successfully run the code on the physical racecar. Not
only did I learn how to communicate and divide tasks efficiently, but I further
practiced my debugging and organization skills. I learned the value of having a
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well organized program for easier implementation and testing and how to utilize
everyone’s skill sets effectively. I believe my team worked well together. It was
due to everyone’s effort and will that we managed to successfully program a
wall follower and safety controller. This paper and the presentation serves as
the product of our teamwork, hard work, and perseverance.
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